Preprint
UCRL-JC-151964

A C++ Infrastructure for
Automatic Introduction
and Translation of
OpenMP Directives

D. Quinlan, M. Schordan, Q. Yi, B. R. de Supinski

This article was submitted to workshop on OpenMP Applications
and Tools 2003, Toronto, California
06/26/2003 — 06/27/2003

U.S. Department of Energy

Lawrence
Livermore
National

Laboratory July 28, 2003

N=""

Approved for public release; further dissemination unlimited

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University
of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University
of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Approved for public release; further dissemination unlimited

A C++ Infrastructure for Automatic Introduction
and Translation of OpenMP Directives

Dan Quinlan* Markus Schordan Qing Yi
Bronis R. de Supinski

July 28, 2003

Abstract

In this paper we describe a C++ infrastructure for source-to-source trans-
lation. We demonstrate the translation of a serial program with high-level ab-
stractions to a lower-level parallel program in two separate phases. In the first
phase OpenMP directives are introduced, driven by the semantics of high-level
abstractions. Then the OpenMP directives are translated to a C++ program
that explicitly creates and manages parallelism according to the specified di-
rectives. Both phases are implemented using the same mechanisms in our
infrastructure.

1 Introduction

The use of OpenMP within the OpenMP research community seems complicated
by the lack of easy to use compiler infrastructure. Although much work is focused
on OpenMP for FORTRAN 77 and FORTRAN 90, and there may be an abun-
dance of C language compiler infrastructure; the unavailability of C++ compiler
infrastructure has significantly limited the many research opportunities. In this
paper, we present a useful infrastructure, ROSE [1], to assist the OpenMP research
community generally, but particularly for OpenMP/C++ research.

Our infrastructure allows the automated introduction of OpenMP directives
based on the semantics of user-defined abstractions. The introduction of pragmas,
when adding OpenMP directives to a given code, is one of many possible appli-
cations. Another one is the translation of OpenMP directives; the recognition of
specific pragma directives and the translation of associated code fragments to gen-
erate a program that explicitly creates and manages parallelism. We shall use a
running example to illustrate both phases and how the ROSE infrastructure [1] can
simplify these tasks. Through this example, we demonstrate the relatively simple
specification of an OpenMP transformation to use the lower level Nanos Library for
OpenMP [2]. We also discuss how to modify that transformation to implement the
full OpenMP standard. Given the semantic similarity between most OpenMP run-
time libraries, we expect that transformations for other OpenMP runtime libraries
should be equally simple.

Since within ROSE we have the full type resolution within the AST, and not just
syntax, the type information of specific user-defined types can be used as a basis
for the optimization of applications that use them. And by including knowledge of
the semantics of specific abstractions, fundamentally more information is available
to the compiler and greater levels of optimization are often possible, depending

*Centre for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,
CA 94551, USA (dquinlan@llnl.gov).

upon the abstractions. We will show through the use of an array abstraction, that
because the stronger array semantics is satisfied by the weaker OpenMP constraints
we can automate the introduction of OpenMP directives into otherwise serial code.
This approach permits fundamentally serial code to use the additional semantics of
the array abstractions and be run as parallel code.

2 Infrastructure

The ROSE infrastructure offers several components to build a source-to-source
translator. A complete C++ frontend is available that generates an object-oriented
annotated abstract syntax tree (AST) as intermediate representation. Several dif-
ferent components can be used to build the midend of a translator: to operate on
the AST, a predefined traversal mechanism, a restructuring mechanism, and an at-
tribute evaluation mechanism can be used to implement a transformation. Other
features are for example parsing of OpenMP directives and integrating these direc-
tives into the AST. A C++ backend can be used to unparse the AST and generate
C++ code (see fig. 1).

(completed) source fragment AST

\ v

attribute evaluation

C++ source AST AST C++ source

> frontend > midend > backend

!

AST unparsed AST fragment

|
restructure operators |
.

!

Figure 1: ROSE Source-To-Source infrastructure with frontend/backend reinvoca-
tion

2.1 Frontend

We use the Edison Design Group C++ frontend (EDG) [3] to parse C++ programs.
The EDG frontend generates an AST and performs a full type evaluation of the
C++ program. The AST is represented as a C data structure. We translate this
data structure into an object-oriented abstract syntax tree which is used by the
midend as intermediate representation.

2.2 Midend

The midend supports restructuring of the AST. Code that is added to the AST can
be specified as a source string, using C++ syntax, or by constructing subtrees node
by node. An AST restructuring operation specifies a location in the AST where
code should be inserted, deleted, or replaced. The code can be specified as C++
source string or an AST subtree. A program transformation consists of a series of
AST restructuring operations.

The order of the restructuring operations is based on a pre-defined traversal.
In a transformation the AST is traversed and different restructuring operations are
invoked on the AST. The problem of restrucuring the AST while traversing it, is
addressed by making restructuring operations side-effect free functions that define
a mapping from one subtree of the AST to another subtree. The new subtree is
not inserted before the traversal of this subtree is finished. We provide interfaces

for invoking restructuring operations that buffer these operations to ensure that no
subtrees are replaced while they are traversed.

The attribute evaluation mechanism allows the computation of attribute values
for AST nodes. Context information can be passed down the AST as inherited
attributes and results of computations on a subtree can be computed as synthesized
attributes (passing information upwards the tree). Examples for values of inherited
and synthesized attributes are type information, size of arrays, the nesting level of
loops, the scopes of associated pragma statements, etc. These values can be used
to specify constraints on a transformation, i.e. to decide whether a restructuring
operation should be applied.

Our infrastructure allows to use C++ source code strings to define code frag-
ments. Any source string which represents a valid declaration, statement(list), or
expression can specify a code pattern to be inserted into the AST. The translation
of a source code string, s, into an AST fragment, is performed by reinvoking the
frontend. The string, s, is extended by our system to form a complete program.
This completed program is parsed into an AST by reinvoking the frontend. From
this AST, we extract the AST fragement that corresponds to the source string s.
This AST fragement is inserted into the AST.

2.3 Backend

The AST is unparsed and C++ source code is generated. It can be specified to
unparse all included (header) files or the source file(s) specified on the command
line only. This feature is important when transforming user-defined data types, for
example when adding generated methods.

The backend can also be invoked during a transformation, to obtain the source
code string that corresponds to a subtree of the AST. Such a string can be combined
with new code (also represented as a source string) and inserted into the AST.

Both phases, the introduction of OpenMP directives and the translation of
OpenMP directives, can be automated using the above mechanisms, as described
in the following sections.

3 Semantics-Driven Introduction of OpenMP Di-
rectives

The use of high-level abstractions so greatly improves the productivity of developing
scientific applications that we seek a way to address the numerous performance
issues associated with it.

3.1 User-Defined Abstractions

User-defined abstractions permit a way to tailor the user-environment to be more
domain specific than a general purpose language could allow. General purpose
languages are expensive to develop and result from many years of work. The com-
pilers that define the language are both expensive and difficult to develop. Such an
investment is only possible for a sufficiently large user group.

Simplifying the development of many applications within a specific domain is
commonly done through the development of domain-specific libraries. The libraries
invariably define abstractions that hide numerous tedious details associated with the
development of applications within a specific domain. The combination of a general
purpose language and a domain specific library is not the same as a domain-specific
language. The essential difference is that the complete semantics of a library’s
abstractions are unknown at compile time and, thus, some significant optimizations

int n;

Range I,J,K;
floatArray A(n,n,n);
floatArray rhs(n,n,n);
floatArray B(n,n,n);

A(1,J,K) = rhs(I,J,K) + (B(I+1,J,K) + B(I-1,J,K) + B(I,J-1,K) +
B(I,J+1,K) + B(I,J,K-1) + B(I,J,K+1) - 6.0 * B(I,J,K));

Figure 2: Example: Code fragment showing the use of A++/P++ array semantics.

are impossible for the compiler to implement. The result is all too often that many
essential abstractions are abandoned because they can’t provide sufficiently high
performance.

3.2 A++4/P++4 Serial and Parallel Array Class Library

We use a motivating example from the A++/P+4 array class library [4] to show
how the ROSE framework can be used by the library writer to develop a source-to-
source translator that optimizes code based on high-level semantics. The example
uses two classes which are implemented twice; once in the serial A++ library and
again in the parallel P++ library. Within our motivating example we consider
the following trivial five-point stencil array operation. In figure 2, A and B are
multidimensional array objects of type floatArray. I and J are Range objects
that together specify a two dimensional index space of the arrays A and B. The
following sections demonstrate how ROSE supports the optimization of a scientific
application code through our running example.

3.3 Automated Insertion of OpenMP Directives

Because of the parallel semantics of the A++ and P++ array objects, their use is
interchangeable. This permits serial applications to be developed using A++ (serial
arrays) and then recompiled to run in distributed memory mode using P++ (parallel
arrays). Some simple constraints are that any use of non A++ array objects not
constrain the data-parallel model that is hidden within the array semantics.

Since the parallel array semantics of A++ and P++ are consistent with those
of OpenMP, OpenMP directives can safely introduce shared memory parallelism
into all uses of A++ and P++ array objects. This is essential for the automated
insertion of OpenMP directives without complex dependence analysis of the serial
code.

3.4 Example C++ Code

The example codes in figure 2 and figure 3 demonstrate the transformation of high-
level A++ code to highly efficient OpenMP code. The two codes are semanti-
cally equivalent, but the first code shows the use of high-level array abstractions.
The semantics of the array abstractions are similar to those of array statements in
FORTRAN 90, but the implementation is a (C++) class library instead of a (FOR-
TRANT7) language extension. Clearly, the standard compilation process cannot
take the semantics of the array class objects into account since those semantics are
user defined. At this high level of abstraction, the C++ compiler is quite power-
less to introduce any significant optimizations, precisely because the abstraction’s
semantics that are relevant to critical optimizations are user-defined and unknown.

The high-level A++ code can be automatically transformed into the greatly ex-
panded, but more efficient code shown in figure 3. The ROSE infrastructure allows
the library implementer to leverage the semantics of the array class objects that are

#define SC(x1,x2,x3) /* case UniformSizeUnitStride */ (x1)+(x2)*_sizel+(x3)*_size2
#pragma omp parallel for private (_3, _2, _1) \
shared (AIJKpointer, rhsIJKpointer, BIJKpointer)
for (_3 = 0; _3 < _length3; _3++) {
for (_2 = 0; _2 < _length2; _2++) {
for (_1 = 0; _1 < _lengthl; _1++) {
AIJKpointer[SC(_1,_2,_3)] =
rhsIJKpointer[SC(_1,_2,_3)] +
(BIJKpointer[SC((_1 + 1),_2,_3)] + BIJKpointer[SC((_1 - 1),_2,_3)] +
BIJKpointer[SC(_1,(_2 - 1),_3)] + BIJKpointer[SC(_1,(_2 + 1),_3)] +
BIJKpointer[SC(_1,_2,(_3 - 1))] + BIJKpointer[SC(_1,_2,(_3 + 1))] -
6.0 * BIJKpointer[SC(_1,_2,_3)]);
}
}
}

Figure 3: Example: Transformed A++/P++ array class code fragment showing
the insertion of an OpenMP directive (excluding preceding declarations)

required to implement the transformation in a source-to-source translator that pro-
vides a library-specific compilation process. Specifically, the ROSE frontend creates
an AST. The traversal mechanism allows the targeted array class statements to be
located in the code. The restructuring mechanism is used to replace the high-level
code with the corresponding, but more efficient code and the attribute mechanism
supports important details of the transformation such as proper declaration of the
loop control variables. A very small and almost trivial part of the transformation is
the additional step to have the transformation also generate the OpenMP directive
before the outermost loop.

3.5 Discussion

The ROSE mechanisms provide a general approach for the optimization of complex
libraries that is not specific to the A++/P++ library. We use this example because
it is both a high-level abstraction specifically tailored to parallel scientific computing
and because it is one with which we are familiar. Improving the performance of
the A++/P++ library also has a direct impact on other applications and libraries
using it (the Overture Framework [5] in particular).

4 Translation of OpenMP Directives

We use ROSE to build a specialized source-to-source translator that transforms
OpenMP directives into lower-level code using an OpenMP runtime library. For our
work, we have selected the Nanos OpenMP runtime library [2], but our intention is
to demonstrate that any runtime library could be used. We believe our approach
would be nearly the same for any OpenMP runtime library, given the seemingly
strong semantic resemblance between the few that we have seen. An aspect of our
effort is to show how easily other researchers within the OpenMP community could
use the ROSE compiler infrastructure for OpenMP research. We hope that access to
open compiler infrastructure for C, and particularly for C++, will be found useful.

4.1 Translation Specification

Before translating OpenMP directives into runtime library calls, we must first define
a specification that maps the input and output of the translation. Figure 4 presents
an example of such mapping, which translates the OpenMP parallel-for directive
(with the shared, private, default and schedule clauses) into calls to the lower-
level Nanos OpenMP runtime library [2]. We choose the parallel-for directive
because it is suitable for illustrating our OpenMP source-to-source translator (shown
in Figure 5) and because the ROSE infrastructure can automatically introduce it

Input:
#pragma omp parallel for schedule($scheduletype, $chunksize) default ($defaulttype) \
shared($shared_var_list) private($private_var_list)
for ($i = $lb; $i <= $ub; $i + = $step) {
$loop-body
}

Output:
void supportingOpenMPFunction$id(int* intone_me_01, int* intone_nprocs_01,
int* intone_master01, $shared_var_decllist)
{

$private_var_decl list;
int intone_start, intone_end, intone_last;

intone_begin_for($lb, $ub, $step, $chunksize, $scheduletype);
while (intone next_iters(&intone_start, &intone_end, &intone_last)) {
for ($i = intone_start; $i <= intone_end-1; $i + = $step) {
$loop-body
}

intone_end_for(true)

}

int intone nprocs_01 = intone_cpus_current();
intone_spawnparallel(supportingOpenMPFunction$id, $numOfArgs, intone_nprocs_01,
$shared_var_list);

Figure 4: Specification for translating the OpenMP parallel-for directive into Nanos
runtime library calls (the bold text marks OpenMP keywords, and the $ sign denotes
parameters of the input and output fragments.)

(1)Parse the C++/C input program and construct an Abstract Syntax Tree
Parse the OpenMP directives in the constructed AST
(2)Traverse the Abstract Syntax Tree of the input program
At each tree node astNode:
if ((pragma = PrevStatement(astNode)) is an OpenMP directive)
string Open M P _support_func = parameterized supporting-function string for pragma
for (each parameter par in OpenM P _support_func)
string par_val = Compute-Parameter-Value(par,astNode)
String-Replace-Substring(Open M P_support_func, par, par-val)
Add OpenM P _support_func into global scope
OpenM P _replace_pragma = parameterized intone_spawnparallel call for pragma
Substitute parameters in Open M P _replace_pragma with correct values
replace pragma and astNode subtrees with OpenM P _replace_pragma
(3)Unparse the Abstract Syntax Tree

Figure 5: Algorithm for translating OpenMP directives into runtime library within
the ROSE infrastructure

using the A++/P++ array semantics, as shown in Figure 3. After applying the
mapping in Figure 4, our OpenMP source-to-source translator can further transform
the OpenMP code in Figure 3 into the Nanos runtime library calls; the result is
shown in Figure 6.

In general, to provide translation support for the entire set of OpenMP direc-
tives, we need to specify a translation mapping, such as the one in Figure 4, for each
OpenMP directive. These mappings should be easily constructed from the manual
of an OpenMP runtime library. We then use these mappings to instantiate the
general translation algorithm in Figure 5. Though currently we have implemented
only the translation of the parallel-for directive within the ROSE infrastructure,
other OpenMP directives can be translated in a similar fashion.

4.2 Translation Algorithm

Figure 5 presents the structure of a ROSE source-to-source translator that trans-
forms an arbitrary OpenMP directive into its corresponding runtime library calls.
This source-to-source translator is separated into the following three phases.

void supportingOpenMPFunction__0_0(int* intone_me_01, int* intone_nprocs_01,

int* intone_master_01, float * AIJKpointer, float * rhsIJKpointer,
float * BIJKpointer, int _lengthl, int _length2, int _sizel, int _size2)
1{

int _1, _2, _3;

int intone_start, intone_end, intone_last;

intone_begin_for(0,100,1,0,0);

while(intone_next_iters(&intone_start,&intone_end,&intone_last)) {

for (_3 = intone_start; _3 <= intone_end; _3++) {
for (_2 = 0; _2 < _length2; _2++) {
for (_1 = 0; _1 < _lengthl; _1++) {
AIJKpointer[_1 + _2 * _sizel + _3 * _size2]

rhsIJKpointer[_1 + _2 * _sizel + _3 * _size2] +
(BIJKpointer[(_1 + 1) + _2 * _sizel + _3 * _size2] +
BIJKpointer[(_1 - 1) + _2 * _sizel + _3 * _size2] +
BIJKpointer[_1 + (_2 - 1) * _sizel + _3 * _size2] +
BIJKpointer[_1 + (_2 + 1) * _sizel + _3 * _size2] +
BIJKpointer[_1 + _2 * _sizel + (_3 - 1) * _size2] +
BIJKpointer[_1 + _2 * _sizel + (_3 + 1) * _size2] -
6.0 * BIJKpointer[_1 + _2 * _sizel + _3 * _size2]);
}
}
}
}
intone_end_for (true);

}
intone_nprocs_01 = intone_cpus_current();
intone_spawnparallel(supportingOpenMPFunction__0_0, 8, intone_nprocs_01, AIJKpointer,
rhsIJKpointer, BIJKpointer, _lengthl,_length2,_sizel,_size2);

Figure 6: Example: transformed A++/P++ array class code fragment using the
Nanos runtime library

The first phase uses the front end of ROSE to parse the input program into an
AST, which provides support for most C++ high-level constructs and thus closely
matches the structure of the original program. Within the same phase, the source-
to-source translator then makes a second pass of the constructed AST to expand
the OpenMP directives. Unlike the C++ front end, the OpenMP construct parser
is not already implemented in ROSE and thus needs to be provided by the OpenMP
source-to-source translator. It is our plan to provide a full implementation of this
parser within our OpenMP source-to-source translator.

The OpenMP construct parser not only translates each string pragma into struc-
tured AST nodes, it also automatically collects all the implicit parallelization in-
formation pertinent to the OpenMP directive. For example, after this pass, even if
the parallel-for directive in Figure 4 does not have a shared clause (assuming
all variables are shared by default), the OpenMP parser will automatically collect
the set of shared variables and then insert a shared clause into the parsed pragma.
The exact behavior for variables in either $shared_var list or $private_var list is
determined by the default clause (if present) and is implemented entirely in the
OpenMP parser. Thus, the subsequent phases of the translation algorithm can
assume that all data storage attributes are explicit (this is equivalent to having a
default (momne) clause in the original work-sharing construct).

The second phase of the OpenMP source-to-source translator then traverses
the AST and transforms the fully expanded OpenMP directives within the AST.
At each node astNode, if the statement pragma immediately before astNode is
an OpenMP directive, we translate this directive by first constructing a support-
ing function (OpenM P _support_func) for the original code (the subtree rooted
at astNode). This supporting function is a parameterized string provided by
the translation mapping specification (e.g., the section output in Figure 4). We
then proceed to substitute all the parameters in the supporting-function string
with their corresponding string values pertinent to the original code. Since the
source-to-source translator has the pre-knowledge about all the parameters in the

OpenM P_support_func string, it can compute the values for these parameters
by invoking pre-defined AST analysis facilities within ROSE. We then insert the
fully expanded OpenM P _support_func into the global scope and thus make it an-
other function definition of the original C++ program. Next, we create a string,
OpenM P_replace_pragma, that invokes the expanded supporting function using
parallel threads (e.g., the intone_spawnparallel call in Figure 4). Finally, after sub-
stituting the parameters in OpenM P_replace_pragma with corresponding values,
we use OpenM P_replace_pragma to replace both the original OpenMP directive
(pragma) and the original code fragment (the subtree rooted at astNode).

Most steps described above can be realized in a straightforward fashion by simply
invoking existing ROSE mechanisms. To illustrate the simplicity of this mapping,
Figure 7 presents the ROSE C++ implementation for translating the parallel-for
directive defined in Figure 4. Here we omit some parameter substitutions due to
lack of space. Note that ROSE provides facilities to directly edit parameters in
strings and to insert strings directly into the AST (they are parsed into abstract
syntax subtrees before being inserted into the global AST).

As the final phase, after all the OpenMP directives have been translated, the
source-to-source translator unparses the transformed AST to produce a C++ pro-
gram that includes only calls to the OpenMP runtime library.

4.3 Discussion

Generalizing the source-to-source translator discussed in the preceding sections to
provide support for the full OpenMP specification is the subject of on-going work.
In this section, we discuss the modifications that our approach requires to provide
that support. We consider all OpenMP directives, including any associated clauses.

The source-to-source translator presented thus far implements the OpenMP
parallel-for construct, including the private, shared, default and schedule
clauses. The source-to-source translator, as described, does not implement several
possible clauses of the directive; extending it to support the remaining clauses is
straightforward. As discussed in section 4.2, parsing of the construct determines the
lists of private and shared variables, including those for which the storage attribute
is implicit. The construct parsing can easily be modified to build lists for the other
data attribute clauses. As discussed in the Nanos documentation [6], variables with
the firstprivate and lastprivate attributes become arguments to the call of the
supporting function with corresponding internal variable names for the parameters.
The only other change necessary to our source-to-source translator is to include the
appropriate assignment between the internal variable name and the name used in
the loop body in the supporting function string. The reduction clause requires
similar changes, with the assignment guarded by a lock that is initialized prior to
spawning the parallel region. The if clause requires that OpenM P_replace_pragma
be extended to include the intone_spawnparallel call in an if statement with the
original code cloned into the else clause, which is easily implemented with the ROSE
restructuring mechanism.

Changes to the source-to-source translator that would support splitting the com-
bined parallel-for directive are not difficult. In order to support the OpenMP
parallel construct (i.e., without the for loop), the string used for the supporting
function would only include the portions that establish the variable lists and the
original code. We can support stand-alone OpenMP for constructs by replacing
the pragma and original code with the body of the supporting function instead
of the intone_spawnparallel call. In order to implement orphaned directives cor-
rectly with separate compilation, the runtime library must support this in-place
replacement.

Straightforward modifications to the source-to-source translator will also extend

OpenMPSynthesizedAttribute
OpenMPTraversal::evaluateRewriteSynthesizedAttribute (
SgNode* astNode, OpenMPInheritedAttribute inheritedAttribute,
SubTreeSynthesizedAttributes synthesizedAttributeList) {
OpenMPSynthesizedAttribute returnAttribute(astNode);
if (OmpUtility::isOmpParallelFor(astNode)) {
SgForStatement *forStatement = isSgForStatement (astNode);
string supportFunction = " \n\
void supportingOpenMPFunction_$ID (int* intone_me_O01, int* intone_nprocs_01,
int* intone_masterO1, $SHARED_VAR_DECL_LIST) { \mn\
$PRIVATE_VAR_DECL_LIST; \n\
int intone_start, intone_end, intone_last; \n\
intone_begin_for ($LB,$UB, $STEP , $CHUNKSIZE , $SCHEDULETYPE) ; \n\
while (intone_next_iters(&intone_start,&intone_end,&intone_last)) { \n\
for ($LOOPINDEX = intone_start; $LOOPINDEX <= intone_end; $LOOPINDEX += $STEP) { \n\
$LOOP_BODY; \n\
} \n\
} \n\
intone_end_for(true); \n\
} \n";
string spawnParallel = " \
intone_nprocs_01 = intone_cpus_current(); \n\
intone_spawnparallel(supportingOpenMPFunction_$ID,$NUM_ARGS,intone_nprocs_01,\
$SHARED_VAR_LIST) ;\n";

// Edit the function name and define a unique number as an identifier
string uniqueID = buildUniqueFunctionID();

supportFunction = StringUtility::copyEdit (supportFunction, "$ID",uniqueID);
spawnParallel = StringUtility::copyEdit(spawnParallel, "$ID",uniquelD);

// Edit the loop parameters into place

string loopBody = forStatement->get_loop_body()->unparseToString();

supportFunction = StringUtility::copyEdit(supportFunction, "$LOOP_BODY",loopBody) ;
. // similar copyEdits for $LOOPINDEX, $LB, $UB, $STEP

// Edit the OpenMP parameters into place

OmpUtility ompData (astNode);

string privateVarDeclList = ompData.generatePrivateVariableDeclaration();

string sharedVarList = ompData.generateSharedVariableFunctionParameters();

string sharedVarDeclList = ompData.generateSharedVariableFunctionDeclarations();

supportFunction = StringUtility::copyEdit(supportFunction,
"$SHARED_VAR_DECL_LIST",sharedVarDeclList);

supportFunction = StringUtility::copyEdit(supportFunction, "$SHARED_VAR_LIST",
sharedVarList);

spawnParallel = StringUtility::copyEdit(spawnParallel,
"$SHARED_VAR_LIST",sharedVarList);

supportFunction = StringUtility::copyEdit(supportFunction,
"$PRIVATE_VAR_DECL_LIST",privateVarDeclList);

. // similar copyEdits for $CHUNKSIZE,$SCHEDULETYPE, and $NUM_ARGS

AST_Rewrite::addSourceCodeString(returnAttribute, "#include \"nanos.h\"",
inheritedAttribute, AST_Rewrite::GlobalScope,
AST_Rewrite::TopOfScope, AST_Rewrite::TransformationString, false);

AST_Rewrite::addSourceCodeString(returnAttribute, supportFunction, inheritedAttribute,
AST_Rewrite::GlobalScope, AST_Rewrite::BeforeCurrentPosition,
AST_Rewrite::TransformationString, false);

AST_Rewrite::addSourceCodeString(returnAttribute, transformationVariables,
inheritedAttribute, AST_Rewrite::LocalScope, AST_Rewrite::TopOfScope,
AST_Rewrite::TransformationString, false);

AST_Rewrite::addSourceCodeString(returnAttribute, spawnParallel, inheritedAttribute,
AST_Rewrite::LocalScope, AST_Rewrite::ReplaceCurrentPosition,
AST_Rewrite::TransformationString, false);

}
return returnAttribute;

}

Figure 7: Example: Code fragment showing translation of an OpenMP directive.

it to implement the other work-sharing constructs and synchronization directives.
The Nanos documentation discusses how to implement the sections construct and
the single directive as variations of the for construct, while the replacement code
for the synchronization constructs are even simpler. Although we could modify the
replacement code to use other calls for runtime libraries that provide calls specific
to the sections construct and the single directive, we plan to implement them
as variants of the for construct initially.

We have not fully determined how to support threadprivate storage in our
source-to-source translator. Our support for threadprivate storage is highly de-
pendent on the support provided by the OpenMP run time library. The Nanos
runtime library targets FORTRAN, and uses pseudo-dynamically allocated stor-
age. More straightforward solutions are possible in C and C++ and one option is
to provide an alternative mechanism. Whether or not we use the existing support
of the runtime library, we expect that providing support for threadprivate storage
will be fairly straightforward if it has static block-scope; while the support may be
more complex for file-scope or name-space scope, particularly for initializating the
storage.

The generality of the OpenMP translation in Figure 5 and the just discussed
modifications depends on specific design properties of the OpenMP runtime library.
In particular, given an OpenMP runtime library implementation, if a translation
interface similar to Figure 4 can be defined for each OpenMP directive, the source-
to-source translator can easily be adapted to provide all the necessary translation
support. Otherwise, if the translation of a particular OpenMP directive not only
depends on itself and the source code that it applies to, but also depends on the
subtle variations of its enclosing context, the algorithm in Figure 5 may not be
directly applicable.

An example is the treatment of OpenMP threadprivate clauses. If the transla-
tion interface requires the OpenMP source-to-source translator to generate different
output code patterns depending on whether or not threadprivate storage has been
previously used, a straightforward adaptation of Figure 5 will not work. For such
cases, more complicated global analysis and transformation techniques are required.

5 Related Work

Although a number of compilers were developed to support OpenMP applications,
most OpenMP research projects [2,7-9] only support applications written in C or
FORTRAN. Because commercial C++ compilers, such as the SGI MIPSpro [10],
the IBM XL [11], the Intel KAI Guide [12], and the Fujitsu for SPARC Solaris [13],
target specific machine architectures and do not provide an open source-to-source
transformation interface to the outside world, they cannot be used by the research
community directly to plug in different OpenMP implementations. As the result, no
OpenMP source-to-source translator was available for research into optimizing C++
applications. By providing a flexible source-to-source translator, we present an open
research infrastructure for optimizing C++ constructs and OpenMP directives.
Previous research source-to-source translators provide various infrastructures
for optimizing OpenMP directives. In particular, the OdinMP/CCp compiler [7]
takes a C-program with OpenMP directives and produces a C-program for POSIX
threads. In contrast, the Omni compiler [8] translates the OpenMP pragmas in
C-programs into runtime library calls, which in turn then invoke either POSIX or
Solaris threads. The NanosCompiler [2] and the Polaris compiler [9] translate For-
tran programs with OpenMP directives in a similar fashion as the Omni compiler.
In addition to OpenMP-directive translation, most of these infrastructures also in-
vestigate techniques to automatically generate OpenMP directives and to optimize

10

the parallel execution of OpenMP applications. We complement the previous re-
search by presenting an infrastructure for the C++ OpenMP pragma translation
and for the automatic generation and optimization of C++ parallel applications.

6 Conclusions and Future Work

We have presented infrastructure for the transformation of C and C++ applica-
tions. We have used the semantics of high-level abstractions to demonstrate the
automated introduction of OpenMP directives to parallelize serial codes. Finally
we demonstrated the translation of a representative OpenMP directive using the
Nanos library.

In future work we will make available the OpenMP translation phase as a sepa-
rate component. This will permit anyone defining transformations to specify them
more simply via OpenMP directives and to then process the AST to generate the
final code automatically using an OpenMP runtime library.

We are considering applying the ROSE infrastructure to the optimization of
the use of OpenMP runtime libraries. This third aspect of ROSE-based OpenMP
support would be similar to the A++/P++ source-to-source translator in that it
would optimize library use, based domain-specific semantics. For example, we could
specialize the use of the Nanos runtime library for special cases for which commercial
compilers yield significant performance gains, such as when the number of threads
is set to one.

References

[1] Daniel Quinlan, Brian Miller, Bobby Philip, and Markus Schordan. Treating
a user-defined parallel library as a domain-specific language. In 16th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS, IPPS, SPDP),
pages 105-114. IEEE, April 2002.

[2] Eduard Ayguade, Marc Gonzalez, and Jesus Labarta. Nanoscompiler: A re-
search platform for openMP extensions. In Furopean Workshop on OpenMP,
September 1999.

[3] Edison Design Group. http://www.edg.com.

[4] R. Parsons and D. Quinlan. A+4/P++ array classes for architecture inde-
pendent finite difference computations. In Proceedings of the Second Annual
Object-Oriented Numerics Conference, April 1994.

[5] Federico Bassetti, David Brown, Kei Davis, William Henshaw, and Dan Quin-
lan. OVERTURE: An object-oriented framework for high-performance scien-
tific computing. In Proceedings of Supercomputing’98 (CD-ROM), Orlando,
FL, November 1998. ACM SIGARCH and IEEE. Los Alamos National Labo-
ratory.

[6] Centre Europeu de Parallelism de Barcelona, Spain. Nanos Manual.
http:/ /nereida.deioc.ull.es/html/nanos.html.

[7] Christian Brunschen and Mats Brorsson. OdinMP/CCp - a portable imple-
mentation of openMP for c. In European Workshop on OpenMP, September
1999.

[8] Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka. Design
of openMP compiler for an SMP cluster. In FEuropean Workshop on OpenMP,
September 1999.

11

[9]

[10]

[11]

[12]

[13]

Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Ik Lee, and Rudolf Eigh-
mann. Portable compilers for openMP. In Workshop on OpenMP Applications
and Tools, July 2001.

Silican Graphics Inc. Optimizing Compilers for High-Performance Computing.
www.sgi.com/developers/devtools/languages/mipspro.html.

IBM. VisualAge C++ Professional for AIX V6.0. WWW-
1.ibm.com/servers/eserver /ecatalog/us/software/6146.html.

Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and Ernesto
Su. Intel openMP C++/Fortran compiler for hyper-threading technology: Im-
plementation and performance. Intel Technology Journal, 6(1):36-46, 2002.

Fujitsu. Fortran €& C Packages for SPARC Solaris.
www.fr.fse.fujitsu.com/devuk/solaris.shtml.

12

